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ULTRASONIC DISPLACEMENT SYSTEM

By Nettle D. Faulcon

Langley Research Center

SUMMARY

In this report, an acoustic instrument system is described as a feasible

tool for remote measurement of structural velocities. The system involves

measurement of the doppler shift of ultrasonic sound as it is reflected from

an oscillating plate. Measurements were performed in air with an ultrasonic

frequency source of 42.5 kilohertz. The surface under investigation was a

plexiglass plate oscillating sinusoidally at 10, 13, and 15 Hz. Data are

presented to show that, in such a system, the measurement of the doppler shift

is dependent upon the acoustic pathlength between the sensing device and the

oscillating surface, with the distance between maximum shifts being half the

wavelength of the ultrasonic source.

INTRODUCTION

In general, there are many proximity sensors available for measurement

of structural velocities; however, these sensors are limited by such con-

straints as conductivity, reflectivity, level of response, and interference

with the surface under investigation. In view of this, an acoustic technique

was conceived as a relatively simple approach which would relax most of these

constraints and additionally, allow operation in hostile environments. The

technique involved sensing an ultrasonic wave doppler shifted from a vibrating

surface and analyzing this reflected wave by FM demodulation. Since acoustic

reflection is not dependent on conductivity or other properties of a surface,



unless in absorbing medium, this technique 
would be useful for most surfaces.

The main purpose of this report is to show that in a system with an oscillating

velocity, as opposed to a constant velocity, 
the doppler frequency shift is

dependent on the receiver to panel 
distance; therefore precaution should 

be

taken for optimum location of the receiver.

SYMBOLS

A1  amplitude of incident sound, newton/meter2

2

A2  complex amplitude of reflected sound, newton/meter

qspeed of sound, 343 meters/second

d peak amplitude of oscillating plate, meter

K wave number of incident sound, meter-i

K1  wave number in x-space

K2 wave number in y-space

p. pressure of incident wave, newton/meter
2

p pressure of reflected wave, newton/meter
2

Ui particle velocity of incident wave, meter/sec

Ur particle velocity of reflected 
wave, meter/sec

U surface velocity of oscillating plate, meter/sec

X position of microphone, meter

xs  surface motion of oscillating plate, meter

8 angle between incident sound and receiver axis

X ultrasonic source wavelength, meter

p density of air, 1.21 kilograms/meter
3

W angular frequency of incident sound, kilohertz

s angular frequency of oscillating plate, hertz
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THEORY

The remote displacement sensor depends upon reflected 
sound for its

operation. The relationship between the reflected sound and the 
velocity is

given in the doppler theory. The following analysis gives the relationship

of the wave reflected from the oscillating plate 
and its interaction with

the incident wave:

* Source y

SSensor

S

2d

Assumptions:

1. Source is many wavelengths away from surface S.

2. S is infinite in extent and perfectly rigid.

3. Incident wave is plane and in the x-y plane.

4. Surface S oscillates simple harmonically in the direction of 
x.

Let x-y plane of the x-y-z frame of reference coincide 
with surface S

at t = 0.

Since the medium is at rest, the incident and reflected waves for

x > 0 space may be written as (ref. 1)
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Pi = A2 exp i(Klx + K 2Y - Wt)

The corresponding particle velocities are

U = P
i pcK i

(2)

KI
U P

r pcK r

If the surface S were stationary, the boundary condition would be

Ui Surface+ Ur Surface = (3)

Since the surface is oscillating, the right-hand side of equation (3) is no

longer zero. Denote the surface motion by

xs = d exp i(-st )

The surface velocity is then

dxs = x (4)
s dt s s

To a fixed observer, the boundary condition is

UilSurface + Surface s (5)

Assume that the surface oscillates in the x direction only,

x = x s = d exp i -s t) is the only equation giving the location of the

surface with respect to a fixed observer. Applying the boundary condition,

equation (5), one gets
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pcK A exp i(Klxs A2 exp i -K 1 xs exp i K 2 y - Wt) = -i x (6)- 22

Since Al is given, one can solve for A2  in equation (6),

A2  s xs exp i(-K2+ + exp i Kxs exp i Klxs) (7)

The pressure observed at the observation point is the sum of the incident

wave and the reflected wave. If the position of 0 is given by (XoYo)

with respect to the fixed coordinate (or the equilibrium position of S), then

Po = Pil + Prl

= Al exp i(KXo + K2Yo- wt) + A2 exp i(-KlXo + K2Y - t)

Applying equation (7) for A2, one gets

Po A1 exp i(K1Xo + K2Yo - lt) + iW xs exp i(-KXo + Klx
K \1o 2ls

+ Al exp i(2K xs - KiXo + K2 Yo - t) (8)

or

Po = Al exp i(-t)exp i K 1 X + K 2Y) + exp i(2Klx - K + K2 Y ]

pcK
+ isx Kl exp i KX s - KXo) (9)

Setting K = K1 , B w s dpc, A = A1 , and Yo = 0, the phase, 0, of Po becomes

-1 -2A sin(wt - Kxs)cos(Kxs - KXo) + B cos(ast + KX - Kx (tan 2A cos(wt - Kxs) cos(Kxs - KXo ) + B sin(w t + KX- (10)
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Differentiating 0 with respect to time gives the doppler frequency;

d [2AcKUs cos t - t - KX sin(Kx - KX) - 4A2 - KUs cos2 Kxs KXdt AcK st 0

+ 2Ac(w- KUs)sin(wt - ws t - KXo)cos(Kxs - KXo)

+ 2Ac(s - KUs)sin(wt - - KXo cos(Kxs - KXo) - B2 (s - KUs

(11)4A 2 cos2( (Kxs - KX) - 4AB sin (wt - st - KX)os (Kxs - KXo)+ B2

Factoring w, KUs, and ws yields;

4A 2 cos 2(Kxs - KXo) - 4AB sin(Wt - W St - KX )cos(Kx - KX) + 2

+ KU 2AB cos (t-Ws t-KX )sin Kx - KX) +4A 2cos2 Kxs- KX - 4AB sin(t-w st- KX)cos (Kxs-KX) +B2
s 4A2 cos 2 (Kx s - KXo)- 4AB sin(wt- t- - KXo)cosKxs  ) + B2

+ 03s [A _i:owt4AB sin( KXs - KX) + B2(12)
2AB sin (t - wt - KX cos(Kx - KX 0 B 2+ WS 

s(4A 2cos 2 Kx s- KX 0 4A sinewt -.. w s tw - ...o( . .) 2 (2



which reduces to:

dO _ F2AB sin(wf - wt - KX 0)cos(Kx - KX - B2

- = -_ + 4A2 o 2(x- X) - 4B sin(t - KX)os(Kx-  KX) + B2

+ KU 4A2cos 2 (Kx - KX) - 4AB sin(wt - w t - KX)cos(Kx - KX + B

+ +W 422AB cs(Wt - t- KX) sin(Kx - KX 0) B

2 x - 4AB sinwt - at -Koo)s- KX+o) -  +

A2o KAB sin t - At -X s - KXs(K - - B2  B (

This relationship may be alternatively written as:

d f- ( [2AB sin wt-w t-KXo)cos(Kx -KX ) -B2] +KUs 2AB coswt -at-X)sin Kxs-

dt s 4A2cos2Kx-K - 4AB sin(wt- w t- KX )cos(Kx - KX )+B

(14)

Equation (14) shows the standard doppler equation plus an--additional term which influences the doppler

frequency according to observer position -Xo. The frequency shift in (14) was determined t = 0,

w 42.5 kHz, w= 10 Hz, A 10- 4 m) for different observer positions, Xo . Figure 1 shows the



magnitude of the shifts as a function of X. It is seen in the figure that

maximum magnitude values are approximately 0.004 meter apart as are the

minimum values. This separation of maximum or minimum points represents

half wavelengths of the 42.5 kHz source frequency in air.

EXPERIMENTAL SETUP AND PROCEDURE

The experimental setup used is shown in figure 2. The tests were per-

formed in air with no specific requirement of the surrounding environment.

The sound frequency and the frequency of the oscillating surface were chosen

and limited only by the specifications of the equipment used.

The sound source was a ring radiator oscillating at 42.5 kHz (wavelength

0.008 m). This frequency was chosen because it afforded no appreciable

absorption in air and was convenient for the equipment used. To insure

accurate-frequency, a frequency generator-synthesizer was used to drive the

radiator. The distribution pattern of the source was determined and its

maximum axis of vibration was placed several wavelengths from the test

surface, a plexiglass plate (12.7 cm by 17.8 cm). The amplitude and frequency

of the test surface were controlled by regulating the corresponding parameters

of the vibration exciter on which it was mounted. The reflected sound was

detected by a probe system consisting of a 0.63 cm (1/4 in.) condenser micro-

phone and a stainless-steel tube, 240 mm in length, 4 mm in diameter. The

position of the probe tube in reference to the surface was read on a milli-

meter scale. For determination of the doppler shift, the probe output was

transmitted to an FM demodulator tuned to 42.5 kHz ± 2 kHz. The bandwidth

of ± 2 kHz was selected because it encompasses the doppler shift encountered
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in the present study; however, if a higher shift is anticipated, a higher

bandwidth could be used. The demodulator delivered a voltage output propor-

tional to the deviation of the input signal from 42.5 kHz. For the purpose

of reading and observing the shift an ac meter and an oscilloscope were used.

The sound source amplitude and the microphone response were checked to

maintain at least 2 mV output, the minimum requirement necessary for satis-

factory operation of the demodulator.

EXPERIMENTAL DISCUSSION

The system was tested with the surface oscillating at 10, 13, and 15 Hz.

In each test, the amplitude of the shift, as given by the demodulator output,

was altered according to the amplitude and frequency of the test surface. It

was found, however, that in all the tests, the shift amplitude was further

dependent on the position of the probe microphone. For the same input, but

different probe positions, the output varied with a pattern similar to ampli-

tude patterns characteristic of standing waves. Figure 3 represents the rms

voltage output of the demodulator, which is proportional to the frequency shift,

as a function of probe position with the test surface oscillating at 10 Hz.

This pattern nearly follows the pattern derived from equation (14), figure 1.

In both figures the maximum shifts were located at half wavelength intervals

of the ultrasonic frequency.

/ CONCLUSION

An acoustic doppler shift technique for measuring structural velocities

has been investigated. A system was designed and experimental application

demonstrated the feasibility of using the system as a remote displacement
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sensor. The sensor works independently of many of the constraints of other

sensors. However, this technique has proven to be very sensitive to the

position of the probe as related to the oscillating surface. The theoretical

treatment developed a frequency equation which showed that the doppler

frequency was influenced by a factor dependent on the position of the

observer. The experimental work was concerned with the demonstration of

this phenomenon and, consequently, no absolute calibrations of the , frequency

shifts were made. By changing the position of the microphone with respect

to the surface, the distances between maximum frequency changes were deter-

mined. These distances agreed with the path lengths between the theoretically

determined maximum frequency changes. It is therefore shown that optimum

output can be determined from optimum receiver position. However, if one

wishes to make a more accurate measurement, a sensitivity calibration at the

selected microphone position will have to be made.
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Figure 1.- Calculated frequency shifts as a function of the microphone position
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